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Shifted 1/N expansion for the Dirac equation for vector and 
scalar potentials 
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Electronics Unit, Indian Statistical Institute, Calcutta 700035, India 

Received 14 June 1989 

Abstract. A relativistic shifted 1 /N  expansion method has been applied to get the energy 
values of the Dirac equation with a potential having both scalar and vector components. 
The analytical results obtained for the energy values are applicable for any potential of 
the above form and the results have been compared with the numerical results of some 
realistic power law quark confining potentials having both scalar and vector interactions. 

A new approximate analytical technique known as the shifted 1/ N expansion (Imbo 
et a1 1984) has received increased attention recently in solving the N-dimensional 
stationary Schrodinger equation where N is the space dimension. Since it leads to 
algebraic equations which can be handled easily with highly accurate results, it has 
been applied to a large number of physically interesting potentials (Roychoudhury 
and Varshni 1988b, c, Roy er a1 1988; for other references see Papp 1988). 

Until very recently, however, the use of this method has been restricted to non- 
relativistic problems. Some time ago, Miramontes and Pajares (1984) studied the 
large-N limit of both the Klein-Gordon and Dirac equations. But their result is not 
of much practical use as they dealt with a pure Coulomb problem which is exactly 
solvable (see also Panja and Dutt 1988). 

Recently, Roychoudhury and Varshni (1987) developed the relativistic shifted 1/ N 
expansion method and used it to the linear scalar potential. They have also extended 
their formalism to the pure vector potential suitable for screened Coulomb-type 
problems (Roychoudhury and Varshni 1988a). Our objective here is to apply the 
method to relativistic problems and to obtain explicit analytical formulae for energy 
values of any radially symmetric potential having vector and scalar parts. To the best 
of our knowledge no work exists on the relativistic shifted 1 / N  expansion on these 
types of potential. Our study will be limited to the cases where the rest energy can be 
assumed to be large compared with the relativistic corrections. 

Unlike the non-relativistic case, numerical calculations of eigenvalues for relativistic 
potentials are not readily available. Therefore for numerical comparison, we have 
considered the Dirac equation with an equally mixed 4-vector and scalar power-law 
potential of the form V ( r )  = A r ” +  V, (Jena and Tripati 1983) with v = 0.1 and A >  0 
as detailed numerical results are available for this potential. 

Now the Dirac equation for a potential with a vector component V and a scalar 
component V,  is (Fock 1978) 
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where $( r )  is a four-component wavefunction and W is the relativistic energy (in the 
units A = c = 1). 

The Dirac equation (1) in N dimensions can be separated in spherical polar 
coordinates thereby reducing to a system of two coupled differential equations for the 
radial wavefunctions F (  r)  and G (  r) (Roychoudhury and Varshni 1987) 

dF 
d r  4 

F = ( W - V +  m + V2)G 

d G  x -+- G = ( W - V +  m + V2)F 
d r  r ( 3 )  

where we have used the standard spinors. 

and 

When S =  +l ,  N =3 ,  j =  I - ; ,  x = I and when S =  -1, N = 3 , j =  I + ; ,  x = -(Z+l), (2) 
and (3) reduce to the usual set of Dirac equations for a radially symmetric potential. 
Now eliminating F and writing W = E + m, we get from (3) and (4) 

--- d2G X ( X f l )  G + ( E  - v ) 2 G + 2 ( m +  V2)(E - v ) G  
dr2 r2  

- 1 dV2 d v  d G + g G  
- E - v + 2 m + 2 V 2 ( 2 d r - x ) ( d r  r ) 

where for convenience we have written v = V +  V,. If we put 

G =  ( 1 +  E - V+2V2)”2p(r) 
2m 

then equation ( 5 )  will be 

- - 1 ( l d 2 v  --+-- ;:) +- 3 1 
2m+2V2+ E - v 2 dr2 4 ( 2 m + E - v + 2 V 2 ) ’  

Now because we are interested in problems where the rest energy is large, we can 
expand terms like (2m + 2 V, + E - v)-’ as 

+. . *]. E - Q+2V2 
2m 
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Moreover, since the contributions of the terms of the order of l / m 3  are small we can 
treat them as perturbations and calculate them after the leading-order calculations 
have been done. Thus neglecting terms of the order of -16m3 we get from (7)  

where 

and 

N + 2 j + l  when j = p  2 

k = {  N + 2 j - 1  when j = Z + t  

so that we can always write 

k = N + 2 1  

in conformity with the non-relativistic case and also 

j =  I-' when 2 

Let us now give a shift to the quantity k, i.e. 

k = E + a  

Then equation (8) can be written as 

-- 1 -+- ( l+?)(  d2cp R 
2m dr2 8mr2 

v2 + U( r)cp - - ( E  - v)cp = 
m 

where ,y in u ( r )  is given by 

when j = l + f  

( 9 )  

It is convenient to shift the origin of coordinate to r = ro by defining (Imbo et a1 1984) 

p 2  

x =- ( r  - ro) 
r0 
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and accordingly we expand v(r), u ( r )  and E as 
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1 g 2  V(ro )  + gxroV’(ro) +- x 2 r i P (  ro) + . . . 
2 

. . 
2 

(17) 
E3 

k 
E = P E o + f E l + E 2 + - +  . . .  

where Q is a scale, whose magnitude is to be determined later, and 

g = l / k .  (18) 

After substituting equations ( 1 5 ) - (  17) in equation ( 1 2 ) ,  the leading-order energy term 
is given by the equation 

r i  2 2 ri r0 
- 2  k ro - -+= V(ro)--- v ( ro )2+s  v(ro)E‘O’+= u ( r , J - r  (v2(ro)E‘o’- V 2 ( r o ) v ( r o ) )  

8m k 2mk mk k km 

In the above derivations Q is chosen to be f2  which gives back the correct Dirac 
equation for any N. Equation (19) gives 

- 
Eo= V ( r o ) - m - V 2 ( r o ) + m  

m 

where 

V ( r ) = - - + -  1 d 2 v  X ( d v  -- 2-  T) -- d2V2 - 
2 dr2  4 d r  dr2 ’ 

Now ro is chosen so as to make Eo a minimum, i.e. 

-- dE0 -0  S > O .  
d r0 d ri 

Equation ( 2 2 )  gives 

+2r:(v’(r0)-  vi(ro))2 
m 

+ 2 m r : ( ~ ~ r , ) -  v t ( rO) ) {4 (  I + y )  V2(rCJ) 

+- P ( r o ) r o  +- 4r0 v ~ ( r o ) ( l + ~ ) + ~ ( ~ ~ ( r o ) -  V2(ro) r: vi(ro))2} . 

2 - +z U(ro)  

1 / 2  

m3 m 

The terms of the order of f, l / f  etc can be obtained in exactly the same manner 
as was done in the case of Schrodinger equation (Imbo e? a1 1984). We here quote 
the results and incorporate the appropriate modifications whenever applicable. 

The next contribution to E is of order f and is given by 
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(25) 

where 

p( yo)* v( ro) p( ro) + p( ro) E‘’’ U”( ro) V,”( r0)E‘O’ 
X ” =  p(ro)--- +2- 

m m m 4m m 

In analogy with the non-relativistic case the shift a is chosen so as to make 
contribution (24) vanish. (It has been shown by Roychoudhury and Varshni (1988) 
that this coice gives the correct result for the relativistic hydrogen atom up to the 
appropriate order in l / m ) .  Now the condition that the expression (24) would give 
zero contribution is 

a =2-2(2n4+l)mw. (26) 
Now equation (11) together with equations ( lob )  and (26) gives the required 

equation for ro as 

~ + 2 1 - 2 + ( 2 n , + 1 ) 2 m w  = E (27) 

E =Eo+ E2 (28) 

The energy including the second-order correction is given by, 

where Eo is given by equation (20) and 

( E‘’’ + V2( ro) - v( ro) 
E2=-F2 1 +  (29) m 

where 

F,= A/ri  

and 

A = (1 /8m) ( l -  a ) ( 3  - a )  + (1 +2nr)b2+3(1 +2n,+2nt)b4 

1 -- [ E:+6( 1 + 2np)ElE3 + (11 +30nr + 30n?)B:] 
W 

where 

- j =  1 ,2 , .  . . &. = 6 
’ ( 2 m ~ ) ” ~  

and 

3(2 - U )  
E 2  = -- (2 - a )  

E1 =- 
2m 4m 
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We first checked our formulae for scalar potential of the form A r  and found that 
our formulae reproduced the numerical results of Roychoudhuri and Varshni (1987). 
It should be mentioned that these authors treated the Dirac equation with scalar 
potential essentially as a Schrodinger equation with the potential duly modified. 

Next we applied our formalism for the Dirac equation with an equally mixed 
4-vector and scalar power law potential of the form V( r )  = Ar’.’ + Vo which reproduces 
the most recent data of 4 and y spectroscopies (Martin 1980, 1981, Barik and Jena 
1980, 1982, Khare 1981). Jena and Tripati (1983) extended this model to fit the mass 
spectra of Qo,  qij and Qij systems in a unified manner. This model has the advantage 
that the Dirac equation can then be reduced to a Schrodinger equation and exact 
numerical solution of the eigenvalue can be found. In table 1 we compare the 
eigenvalues E , , ~  (corresponding to the confined bound state of quarks) related to the 
Dirac quark binding energy W by the following relation: 

when the quark mass m, = 1.709, Vo = -2.028 and A = 1.8031. We have neglected the 
second-order correction whenever it is greater than 5%. Because it was pointed out 
by Maluendes et a1 (1986, 1987) that whenever the lowest-order calculation gives a 
better result than those with higher-order corrections, one encounters the divergence 
problem of perturbation series and then one should use a modified version (Maluendes 
et al 1986, 1987) of the higher-order corrections for the shifted 1 / N  expansion to 
ensure better convergence. As can be seen from the table the agreement of our results 
with the numerical ones is excellent, the maximum error being 2.7’/0, though the shifted 
1/ N expansion is not expected to yield very accurate results for the lowest lying state 
especially when the radial quantum number is large. 

To conclude, we have developed a general formalism for the shifted 1/ N expansion 
of the Dirac equation with potential having both vector and scalar components and 
this formalism gives very good results even to the lowest order. 

Table 1. Spin-averaged eigenvalues E , , ,  for the potential whose vector and scalar components 
are identical and are given by V, = V, = Ar’ + V,, 

1 s  
2s 
3 s  
4 s  
ss 
2P 
3P 
3D 

1.2364 
1.3347 
1.3923 
1.4335 
1.4657 
1.3071 
1.3731 
1.3544 

1.240 
1.340 
1.398 
1.439 
1.471 
1.3096 
1.4115 
1.3581 

~~ ~~ 

t Jena and Tripati 1983. 
$ Present calculation. 
I Denotes the values taking second-order correction. 
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